Abstract

Binuclear oxidative addition of Sb–Cl bonds with the clusters Os3(CO)11(NCCH3), 1, or Os3(CO)10(NCCH3)2, 2, was found to be an effective synthetic route to organometallic clusters and rings containing μ2-SbPh2 or μ3-SbPh moieties. Thus, the reaction of SbPh2Cl with 1 afforded the tetranuclear ring Os3(CO)11(Cl)(μ-SbPh2), 3, while its reaction with 2 afforded the pentanuclear ring Os3(CO)10(Cl)2(μ-SbPh2)2, 6. In each case, two or three isomeric products were isolated depending on the reaction conditions. The analogous reaction of SbPhCl2 with 1, on the other hand, afforded the spiked triangular cluster Os3(CO)11(Cl)2(μ3-SbPh), 7, which also existed as two isomers. Pathways for these reactions have been proposed, and the experimental and computational evidence presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.