Abstract

Reactions of the unsymmetrical phenol ligand 2-(bis(2-pyridylmethyl)aminomethyl)-6-((2-pyridylmethyl)(benzyl)aminomethyl)-4-methylphenol with Mn(OAc)(2).4H(2)O or Mn(H(2)O)(6)(ClO(4))(2) in the presence of NaOBz affords the dimanganese(II) complexes 1(CH(3)OH), [Mn(2)(L)(OAc)(2)(CH(3)OH)](ClO(4)), and 2(H(2)O), [Mn(2)(L)(OBz)(2)(H(2)O)](ClO(4)), respectively. On the other hand, reaction of the ligand with hydrated manganese(III) acetate furnishes the mixed-valent derivative 3(H(2)O), [Mn(2)(L)(OAc)(2)(H(2)O)](ClO(4))( 2). The three complexes have been characterized by X-ray crystallography. 1(CH(3)OH) crystallizes in the monoclinic system, space group P2(1)/c, with a = 10.9215(6) A, b = 20.2318(12) A, c = 19.1354(12) A, alpha = 90 degrees, beta = 97.5310(10) degrees, gamma = 90 degrees, V = 4191.7 A(3), and Z = 4. 2(H(2)O) crystallizes in the monoclinic system, space group P2(1)/n, with a = 10.9215(6) A, b = 20.2318(12) A, c = 19.1354(12) A, alpha = 90 degrees, beta = 97.5310(10) degrees, gamma = 90 degrees, V = 4191.7 A(3), and Z = 4. 3(H(2)O) crystallizes in the monoclinic system, space group P2(1)/c, with a = 11.144(6) A, b = 18.737(10) A, c = 23.949(13) A, alpha = 90 degrees, beta = 95.910(10) degrees, gamma = 90 degrees, V = 4974(5) A(3), and Z = 4. Magnetic measurements revealed that the three compounds exhibit very similar magnetic exchange interactions -J = 4.3(3) cm(-)(1). They were used to establish tentative magneto-structural correlations which show that for the dimanganese(II) complexes -J decreases when the Mn-O(phenoxo) distance increases as expected from orbital overlap considerations. For the dimanganese(II,III) complexes, crystallographic results show that the Mn(II)-O(phenoxo) and Mn(III)-O(phenoxo) bond lengths are inversely correlated. An interesting magneto-structural correlation is found between -J and the difference between these bond lengths, delta(Mn)(-)(O) = d(Mn)()II(-)(O) - d(Mn)()III(-)(O): the smaller this difference, the larger -J. Electrochemical studies show that the mixed-valence state is favored in 1-3 by ca. 100 mV with respect to analogous complexes of symmetrical ligands, owing to the asymmetry of the electron density as found in the analogous diiron complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call