Abstract

The 30-membered hexaaza macrocylic ligand, L (L=3,7,11,18,22,26-hexaazatricyclo-[26.2.2.2 13,16]tetratriaconta-1(31),13(33),14,16(34),28(32),29-hexaene), is capable of forming binuclear complexes with the divalent transition metal ions Ni, Cu and Zn. The two metal ions are bound by the two dipropylenetriamine units of the macrocycle. Extra coordination sites on the metal ions can be occupied by exogenous ligands such as acetate, chloride and thiocyanate. The crystal structure of one of the di-copper complexes is described: [LCu 2(CH 3CO 2) 2](ClO 4) 2·5H 2O crystallizes in the monoclinic space group P2 1/ c (No. 14), with a=9.369(2), b=17.644(3), c= 27.466(3) Å, β=92.90(1)°, U=4534.7 Å 3 and Z=4. The Cu1···Cu2 separation is 8.40(3) Å. The access for potential exogenous bridging ligands, to the cavity between the copper ions, is somewhat restricted by the two phenyl units of the macrocycle which appear almost parallel in the structure. The redox potential of the couple L(Cu 2+) 2/L(Cu +) 2, recorded by cyclic voltammetry for the chloride adduct, [LCu 2Cl 2]Cl 2·5H 2O, is −0.061 V versus SCE in DMF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.