Abstract

Among diseases, cancer exhibits the fastest global spread, presenting a substantial challenge for patients, their families, and the communities they belong to. This paper is devoted to modeling such a disease as a special case. A newly proposed distribution called the binomial-discrete Erlang-truncated exponential (BDETE) is introduced. The BDETE is a mixture of binomial distribution with the number of trials (parameter n) taken after a discrete Erlang-truncated exponential distribution. A comprehensive mathematical treatment of the proposed distribution and expressions of its density, cumulative distribution function, survival function, failure rate function, Quantile function, moment generating function, Shannon entropy, order statistics, and stress-strength reliability, are provided. The distribution's parameters are estimated using the maximum likelihood method. Two real-world lifetime count data sets from the cancer disease, both of which are right-skewed and over-dispersed, are fitted using the proposed BDETE distribution to evaluate its efficacy and viability. We expect the findings to become standard works in probability theory and its related fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.