Abstract

A large range of options exist for which the boundary conditions of the Black- Scholes differential equation are too complex to solve analytically; an example being the American option. One therefore has to rely on numerical price computation. The best known methods for this is to approximate the stock price process by a discrete time stochastic process, or, as in the approach followed by Cox, Ross, Rubinstein, model the stock price process as a discrete time process from the start. By doing this, the options time to maturity T is decomposed into n equidistant time steps of length

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.