Abstract

Abstract This paper presents the Binomial Markov-switching Multifractal (BMSM) model of asset returns with Skewed t innovations (BMSM-Skewed t for short), which considers the fat tails, skewness and multifractality in asset returns simultaneously. The parameters of BMSM-Skewed t model can be estimated by Maximum Likelihood (ML) methods, and volatility forecasting can be accomplished via Bayesian updating. In order to evaluate the performance of BMSM-Skewed t model, BMSM model with Normal innovations (BMSM-N), BMSM model with Student-t innovations (BMSM-t) and GARCH(1,1) models (GARCH-N, GARCH-t and GARCH-Skewed t) are chosen for comparison. Through empirical studies on Shanghai Stock Exchange Composite Index (SSEC), we find that for sample estimation, BMSM models outperform the GARCH(1,1) models through BIC and AIC rules, and BMSM-Skewed t performs the best among all the models due to its fat tails, skewness and multifractality. In addition, BMSM-Skewed t model dominates other models at most forecasting horizons for out-of-sample volatility forecasts in terms of MSE, MAE and SPA test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.