Abstract

We present a system that integrates a double-pass (DP) instrument and a Hartmann-Shack (HS) wavefront sensor to provide information not only on aberrations, but also on the scattering that occurs in the human eye. A binocular open-view design permits evaluations to be made under normal viewing conditions. Furthermore, the system is able to compensate for both the spherical and astigmatic refractive errors that occur during measurements by using devices with configurable optical power. The DP and HS techniques provide comparable data after estimating wavefront slopes with respect to the intersections of an ideal grid and compensating for residual errors caused by the optical defects of the measuring system. Once comparable data is obtained, it is possible to use this combined manner of assessment to provide information on scattering. Measurements in an artificial eye suggest that the characteristics of the ocular fundus may induce deviations of DP with respect to the HS data. These differences were quantified in terms of the modulation transfer function in young, healthy eyes measured in infrared light to demonstrate the potential use of the system in visual optics studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.