Abstract

Retinotopy and binocular responsiveness were studied extracellularly in a total of 278, 61, 110 and 275 cells sampled in areas 17, 18, 19 and Clare-Bishop (CB) of Siamese cats. The misalignment of the visual axes of the two eyes was determined by the pupil reflex method in the behaving animal. The recording sessions were conducted under N2O anesthesia, supplemented with continuous infusion of short-lasting anesthetics (Saffan, Glaxo) and muscle relaxants (Gallamine triethiodide) using two types of visual stimulators presenting two-dimensional (2D) motion stimuli and the visual cues for three-dimensional (3D) motion. All of the nine Siamese cats demonstrated Boston type retinotopic abnormalities in all of cortical areas 17-19 and CB. Very few binocular cells were present in areas 17-19 and the posterior (A1-P2) CB but they were numerous in most of CB (A9-4). A significant fraction (36/78) of binocular cells in the major CB of the Siamese cats demonstrated similar response selectivity to that reported in normal CB cortex for stimulation with the 3D motion cues under both null disparity and strabismic conditions (binocular receptive fields for two eyes were optically superposed or separated by the strabismic angles estimated in the individual animals). These findings indicate that the binocular signals converging to the CB cells through different pathways (signals coming from the contralateral eye via the ipsilateral hemisphere including the interlaminar nucleus and areas 17-19, and commissural signals from the ipsilateral eye via the contralateral areas 17-19 and CB) were integrated to yield useful information for the recognition of 3D motion, and that the major CB is an actual site of binocular integration at least in Siamese cats, rather than being merely a reflection of the information processing before the CB cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.