Abstract

In recent years, visual localization has gained significant attention as a key technology for indoor navigation due to its outstanding accuracy and low deployment costs. However, it still encounters two primary challenges: the requirement for multiple database images to match the query image and the potential degradation of localization precision resulting from the keypoints clustering and mismatches. In this research, a novel visual localization framework based on a binocular camera is proposed to estimate the absolute positions of the query camera. The framework integrates three core methods: the multi-epipolar constraints-based localization (MELoc) method, the Optimal keypoint selection (OKS) method, and a robust measurement method. MELoc constructs multiple geometric constraints to enable absolute position estimation with only a single database image, while OKS and the robust measurement method further enhance localization accuracy by refining the precision of these geometric constraints. Experimental results demonstrate that the proposed system consistently outperforms existing visual localization systems across various scene scales, database sampling intervals, and lighting conditions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.