Abstract

Group testing is the process of testing items as an amalgamation, rather than separately, to determine the binary status for each item. Its use was especially important during the COVID-19 pandemic through testing specimens for SARS-CoV-2. The adoption of group testing for this and many other applications is because members of a negative testing group can be declared negative with potentially only one test. This subsequently leads to significant increases in laboratory testing capacity. Whenever a group testing algorithm is put into practice, it is critical for laboratories to understand the algorithm's operating characteristics, such as the expected number of tests. Our paper presents the binGroup2 package that provides the statistical tools for this purpose. This R package is the first to address the identification aspect of group testing for a wide variety of algorithms. We illustrate its use through COVID-19 and chlamydia/gonorrhea applications of group testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.