Abstract

Ketamine (KET) is a dissociative anesthetic for restrict medical use with high potential for abuse and neurotoxicity which does not prevent its recreational use. Gallic acid (GA) is a natural free radical "scavenger." We evaluated the GA protective role regarding binge or subchronic (SbChro) KET-induced toxicity in adolescent rats. In the binge protocol, animals were treated with GA (one dose of 13.5mg/kg, p.o. every 2h, totaling 3 doses) 12h after KET exposure (one dose of 10mg/kg, i.p., every 3h, totaling 5 doses). In the SbChro, animals were treated with GA (one dose of 13.5mg/kg/day, p.o., for 3days) 48h following KET exposure (one dose of 10mg/kg/day, i.p) for 10days. Our findings show that binge-KET impaired memory, increased pro-BDNF and TrkB levels in the hippocampus, and increased lipid peroxidation (LP) in the kidney and hippocampus, while SbChro-KET impaired memory, increased pro-BDNF, and decreased both BDNF and TrkB levels in the hippocampus, and increased LP in the kidney, liver, and hippocampus. GA treatment reversed the subchronically KET-induced harmful influences better. Interestingly, only memory impairment observed in the SbChro-KET protocol was reversed by GA. Memory impairments showed a positive correlation with hippocampal BDNF levels and negative with LP levels in the same brain area. This last hippocampal damage (LP) showed a negative correlation with BDNF levels in the hippocampus, indicating an interesting and close causal connection. Our outcomes show that the deleterious effects of SbChro-KET exposure can be attenuated or abolished with GA administration, a natural antioxidant that could be considered in KET abuse treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call