Abstract
Saxitoxin inhibits the action potential Na+ ionophore of electrically excitable neuroblastoma cells with a KI of 3.7 nM. Binding experiments detect a single class of saturable binding sites with KD = 3.9 nM and a binding capacity of 156 fmol/mg of cell protein (78 sites per micrometer2 of cell surface). Saturable binding is completely inhibited by tetrodotoxin but is unaffected by scorpion toxin or batrachotoxin. No saturable binding is observed in cultures of clone N103, a variant neuroblastoma clone lacking the action potential Na+ response. Thus, saxitoxin binds specifically to the action potential Na+ ionophore in neuroblastoma cells. Comparison of saxitoxin and scorpion toxin binding reveals that there are three saxitoxin receptor sites for each scorpion toxin receptors site. The implications of this stoichiometry are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.