Abstract

During fibrinolysis a 28-amino-acid peptide is generated besides other degradation products of fibrin. This peptide, called Bβ15-42, which is cleaved by plasmin from the end of the fibrin Bβ-chain, is protective in myocardial and renal ischemia/reperfusion injury and improves the outcome in experimental sepsis. Bβ15-42 has been shown to mediate different beneficial effects in endothelial cells through binding to vascular endothelial-cadherin. Here, we provide in vitro and in vivo evidence that Bβ15-42 has additional cell protective activity in tubular cells, which is caused by a distinct mechanism. As vascular endothelial-cadherin is not expressed by tubular cells we used ligand-receptor capture technology LRC-TriCEPS to search for tubular cell surface receptors and identified carboxypeptidase M (CBPM) as a novel binding partner of Bβ15-42. Silencing CBPM with siRNA reduced the protective potential of Bβ15-42 against tubular cell stress. Bβ15-42 inhibited the enzymatic activity of CBPM and modified the impact of CBPM on bradykinin signaling. We conclude that beneficial properties of Bβ15-42 are not restricted to endothelial cells but are also active in epithelial cells where cytoprotection depends on CBPM binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.