Abstract

RNA plays a central role in many biological processes and is therefore an important target for drug development. In recent years an increasing wealth of structural and functional information about RNA-ligand complexes has been obtained using in vitro selected RNAs (aptamers). However, all those studies focused on structure and changes of the nucleic acid and mostly considered the ligand as a rigid target. To develop a detailed picture of ligand structure and dynamics in RNA-small molecule complexes, the malachite green binding aptamer was studied. Isotopically labeled ligand in complex with RNA was analyzed by NMR spectroscopy in solution. The surprisingly asymmetric changes in the (13)C chemical shift of the ligand methyl groups indicate that the dye undergoes changes in its conformation and charge distribution upon binding. The role of the RNA electrostatic field in this interaction was explored using ab initio calculations of the ligand structure and charge distribution. The results indicate that the uneven charge distribution in the RNA binding pocket provides a major contribution to the driving force of the ligand structural changes. The observation that not only the RNA adapts to the ligand, in what is called adaptive binding, but that the ligand itself also undergoes conformational changes ("induced fit") is crucial for the rational design of RNA ligands and for understanding the properties of RNA-ligand complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.