Abstract
AbstractOrthorhombic Nb2O5 (T‐Nb2O5) has recently attracted great attention for its application as an anode for sodium ion batteries (NIBs) owing to its patulous framework and larger interplanar lattice spacing. Sulfur‐doped T‐Nb2O5 hollow nanospheres (diameter:180 nm) uniformly encapsulate into sulfur‐doped graphene networks (denoted: S‐Nb2O5 HNS@S‐rGO) using hard template method. The 3D ordered porous structure not only provides good electronic transportation path but also offers outstanding ionic conductive channels, leading to an improved sodium storage performance. In addition, the introduction of sulfur to graphene and Nb2O5 leads to oxygen vacancy and enhanced electronic conductivity. The sodium storage performance of S‐Nb2O5 HNS@S‐rGO is unprecedented. It delivers a reversible capacity 215 mAh g−1 at 0.5 C over 100 cycles. In addition, it also possesses a great high‐rate capability, retaining a stable capacity of 100 mAh g−1 at 20 C after 3000 cycles. This design demonstrates the potential applications of Nb2O5 as anode for high performance NIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.