Abstract
Multidrug-resistant bacteria pose a serious global health threat as antibiotics are increasingly losing their clinical efficacy. A molecular level understanding of the mechanism of action of antimicrobials plays a key role in developing new agents to combat the threat of antimicrobial resistance. Daptomycin, the only clinically used calcium-dependent lipopeptide antibiotic, selectively disrupts Gram-positive bacterial membranes to illicit its bactericidal effect. In this study, we use isothermal titration calorimetry to further characterize the structural features of the target bacterial phospholipids that drive daptomycin binding. Our studies reveal that daptomycin shows a clear preference for the phosphoglycerol headgroup. Furthermore, unlike other calcium-dependent lipopeptide antibiotics, calcium binding by daptomycin is strongly dependent on the presence of phosphatidylglycerol. These investigations provide new insights into daptomycin’s phospholipid specificity and calcium binding behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.