Abstract

A facile method has been developed to synthesize Sn-based nanoparticle-decorated graphene through simultaneous growth of SnO2 nanoparticles and a carbonaceous polymer film on graphene oxide sheets followed by heat treatment at various temperatures (250, 550, 750, and 900 °C). Detailed characterization of the resulting composite material using transmission electron microscopy and field emission scanning electron microscopy suggests that Sn-based nanoparticles were reliably bound to the graphene surface through a carbon film. Cyclic voltammograms and galvanostatic technique were used to investigate electrochemical properties of the Sn-based composite material as the anode of lithium-ion batteries (LIBs). Samples obtained with 550 °C heat treatment, which contained mixed Sn-based components (Sn, SnO, SnO2), exhibit the best electrochemical performance among the series of nanocomposites in terms of specific capacity and cycling stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.