Abstract

A new laser-based mass spectrometry method, called laser induced liquid bead ion desorption (LILBID), was applied to investigate RNA:ligand interactions. As model system the HIV Tat:TAR transactivation complex and its binding behavior were analyzed. TARwt of HIV Type 1 and Type 2 and different artificial mutants were compared regarding their binding to Tat and different peptide ligands. Specific and nonspecific association to TAR was deduced, with the bulge being the well known specific binding site of TAR. In the case of triple arginine (RRR) as a nonspecific ligand, multiple electrostatic binding to TAR was found at higher concentration of RRR. This contrasted with the formation of only ternary complexes in competitive binding studies with TAR, Tat, and potential inhibitors. The fact that the stoichiometries of the complexes can be determined is a major advantage of MS methods over the widely applied fluorimetric methods. A quantitative evaluation of the spectra by a numeric model for ternary complex formation allows conclusions about the role and strength of the binding sites of the RNAs, the specificity and affinity of different ligands, the determination of apparent IC50 and KD values, and a comparison of the binding efficiencies of potential inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call