Abstract

Phosphoenolpyruvate carboxylase (PEPC) is used in plant metabolism for fruit maturation or seed development as well as in the C4 and crassulacean acid metabolism (CAM) mechanisms in photosynthesis, where it is used for the capture of hydrated CO2 (bicarbonate). To find the yet unknown binding site of bicarbonate in this enzyme, we have first identified putative binding sites with nonequilibrium molecular dynamics simulations and then ranked these sites with alchemical free energy calculations with corrections of computational artifacts. Fourteen pockets where bicarbonate could bind were identified, with three having realistic binding free energies with differences with the experimental value below 1 kcal/mol. One of these pockets is found far from the active site at 14 Å and predicted to be an allosteric binding site. In the two other binding sites, bicarbonate is in direct interaction with the magnesium ion; neither sequence alignment nor the study of mutant K606N allowed to discriminate between these two pockets, and both are good candidates as the binding site of bicarbonate in phosphoenolpyruvate carboxylase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call