Abstract

The ability of M-protein-positive (M+) and M-protein-negative (M−) strains (including an M− mutant lacking the structural gene for M-protein) ofStreptococcus pyogenes to attach to human pharyngeal, buccal, and tongue epithelial cells was compared. We observed that M+ strains ofS. pyogenes attached in significantly higher numbers to human pharyngeal epithelial cells than to human buccal or tongue cells. M− strains did not exhibit high-level binding to any type of epithelial cell. Also, the adhesion of an M+ and an M− strain ofS. pyogenes was low to all types of rat epithelial cells tested. The apparent differences in the surface components between human pharyngeal and buccal epithelial cells were confirmed by studies utilizing radiolabeled lectins.Ulex europaeus lectin with a specificity for fucosyl residues, andTriticum vulgaris lectin with a specificity for N-acetyl glucosamine and N-acetyl neuraminic acid residues, bound in higher amounts to human pharyngeal cells than to buccal cells. Pretreatment of pharyngeal epithelial cells with microgram quantities of highly purified type 6 M-protein or miligram quantities of lipoteichoic acid (LTA) derived fromS. pyogenes decreased the subsequent attachment of the organism. However, the binding specificities of3H-LTA were different from those of intact streptococci;3H-LTA bound comparably to human pharyngeal, buccal, and tongue epithelial cells, and it bound in higher quantities to rat epithelial cells. Also, although the adsorption ofS. pyogenes cells to pharyngeal cells was inhibited by the presence of fucose and galactose, these sugars had little effect on the binding of3H-LTA to epithelial cells. In contrast, the high adhesion of M+ strains but not M− mutants to pharyngeal cells suggested that M-protein may play an important role. This possibility was supported by the observation that3H-labeled purified type 6 M-protein bound in higher concentrations to human pharyngeal epithelial cells than to human buccal cells. Furthermore, human pharyngeal epithelial cells were estimated to contain larger numbers of binding sites for M-protein than buccal cells, whereas the affinity of M-protein was similar to both cell types. These adsorption parameters are similar to those previously established for intact streptococcal cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call