Abstract

Although the mechanism for activation of latent TGFβ1 and TGFβ3 is understood to involve the binding of the TGFβ propeptide (LAP) to both an integrin and an insoluble substrate, the activation of latent TGFβ2 has been unclear because the TGFβ2 LAP does not have the classical integrin binding sequence found in the other two TGFβ isoform LAPs. To assess the potential requirement for covalent linkage with a matrix or cell surface protein for the activation of latent TGFβ2, we generated mice in which the TGFβ2 Cys residue predicted to be involved in binding was mutated to Ser (Tgfb2C24S). We reasoned that, if covalent interaction with a second molecule is required for latent TGFβ2 activation, mutant mice should display a Tgfb2 null (Tgfb2−/−)-like phenotype. Tgfb2C24S mice closely phenocopy Tgfb2−/− mice with death in utero between E18 and P1 and with congenital heart and kidney defects similar to those described for Tgfb2−/− mice. The mutant latent TGFβ2 is secreted at levels similar to WT, yet TGFβ signaling monitored as nuclear pSmad2 is suppressed. We conclude that, like latent TGFβ1, latent TGFβ2 activation requires binding to an immobilized matrix or plasma membrane molecule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call