Abstract

AbstractThe binding property of p‐biphenyl isocyanide self‐assembled monolayers (SAMs) on Au and Ag was investigated by temperature‐dependent surface‐enhanced Raman spectroscopy (SERS). p‐Biphenyl isocyanide was found to desorb on Ag at a low temperature of ∼393 K whereas it appeared to remain enduring at a high temperature of ∼453 K for Au. Structures of p‐biphenyl isocyanide SAMs on Au and Ag flat films were checked by means of near‐edge x‐ray absorption fine structure spectroscopy (NEXAFS) at the two different normal (90° ) and grazing (20° ) angles of the incident x‐ray beam. Our results suggested that the SAMs prepared by p‐biphenyl isocyanide should have a relatively disordered structure even at room temperature on both Au and Ag, as indicated from an insubstantial change in NEXAFS spectra at the two different angles from those of p‐biphenyl thiolate and p‐biphenyl methanethiolate. The weakness of the isocyanide–metal bond in comparison with the sulphur–metal bond may result in both low surface coverage and orientational disorder. A density functional theory calculation method was employed to attempt to explain the difference in stability for phenyl isocyanide on Ag and Au surfaces. Our calculation result yielded a lower binding energy of phenyl isocyanide on Ag than that on Au, consistent with the temperature‐dependent Raman results. Copyright © 2005 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.