Abstract

A regulatory subunit of yeast mitochondrial ATP synthase, 9K protein, formed an equimolar complex with F1-ATPase in the presence of ATP and Mg2+, indicating that the binding of the protein to the enzyme took place in a similar manner to that of ATPase inhibitor. The ATP-hydrolyzing activity of F1-ATPase decreased 40% on binding of the 9K protein, and the remaining activity was resistant to external ATPase inhibitor. The apparent dissociation constant of the F1-ATPase-9K complex was determined by gel permeation chromatography to be 3.7 X 10(-6) M, which was in the same order of magnitude as that of enzyme-ATPase inhibitor complex (4.2 x 10(-6) M). When added simultaneously the binding of the inhibitor and 9K protein to F1-ATPase were competitive and the sum of their bindings did not exceed 1 mol per mol of enzyme. However, the binding of each protein ligand to F1-ATPase took more than 1 min for completion, and when one of these two proteins was added 10 min after the other, it did not replace the other. These observations strongly suggest that membrane-bound F1-ATPase always binds to either the 9K protein or ATPase inhibitor in intact mitochondria and that the complexes with the two ligands are active and inactive counterparts, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call