Abstract

Confined molecular environments have peculiar characteristics that make their properties unique in the field of biological and chemical sciences. In recent years, advances in supramolecular capsule and cage synthesis have presented the possibility to interpret the principles behind their self-assembly and functions, which has led to new molecular systems that display outstanding properties in molecular recognition and catalysis. Herein, we report a rapid method based on ESI-MS to determine the binding profiles for linear saturated dicarboxylic acids in a series of different cages. The cages were obtained by self-assembly of modified tris(pyridylmethyl)amine (TPMA) complexes and diamines chosen to explore variations in their size and flexibility. This methodology has provided information on how small changes in the structures of the host and guest can contribute to recognition events. Moreover, it was possible to study molecular systems that contain paramagnetic metals, which are not suitable for classical binding-constant determination by 1 H NMR spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.