Abstract

We examined the subtype-selective binding site of the beta-adrenergic receptors (betaARs). The beta(1)/beta(2)-chimeric receptors showed the importance of the second and seventh transmembrane domains (TM2 and TM7) of the beta(2)AR for the binding of the beta(2)-selective agonists such as formoterol and procaterol. Alanine-substituted mutants of TM7 of the beta(2)AR showed that Tyr(308,) located at the top of TM7, mainly contributed to beta(2) selectivity. However, Tyr(308) interacted with formoterol and procaterol in two different ways. The results of Ala- and Phe-substituted mutants indicated that the phenyl group of Tyr(308) interacted with the phenyl group in the N-substituent of formoterol (hydrophobic interaction), and the hydroxyl group of Tyr(308) interacted with the protonated amine of procaterol (hydrophilic interaction). In contrast to beta(2)AR, TM2 is a major determinant that beta(1)-selective agonists such as denopamine and T-0509 bound the beta(1)AR with high affinity. Three amino acids (Leu(110), Thr(117), and Val(120)) in TM2 of the beta(1)AR were identified as major determinants for beta(1)-selective binding of these agonists. Three-dimensional models built on the basis of the predicted structure of rhodopsin showed that Tyr(308) of the beta(2)AR covered the binding pocket formed by TM2 and TM7 from the upper side, and Thr(117) of the beta(1)AR located in the middle of the binding pocket to provide a hydrogen bonding for the beta(1)-selective agonists. These data indicate that TM2 and TM7 of the betaAR formed the binding pocket that binds the betaAR subtype-selective agonists with high affinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.