Abstract
Vascular anticoagulant alpha (VAC alpha, annexin V) is a member of the family of calcium and phospholipid binding proteins, the annexins. The binding properties of VAC alpha to phospholipid bilayers were studied by ellipsometry. Adsorption was calcium-dependent and completely reversible upon calcium depletion. Half-maximal adsorptions to phospholipid bilayers consisting of 100, 20, 5, and 1% dioleoyl-phosphatidylserine (DOPS) supplemented with dioleoyl-phosphatidylcholine (DOPC) were reached at Ca2+ concentrations of 0.04, 0.22, 1.5, and 8.6 mM. These surfaces all showed the same maximal adsorption of 0.22 +/- 0.01 micrograms of VAC alpha/cm2 (mean +/- S.D.). The adsorption to bilayers containing more than 10% DOPS was independent of VAC alpha concentrations in the range of 0.5-100 nM. Dissociation constants for VAC alpha binding to these surfaces were estimated to be below 2 x 10(-10) M. No adsorption was observed on pure DOPC bilayers at a Ca2+ concentration of 3 mM. The ability to mediate VAC alpha binding to 20% DOPS/80% DOPC bilayers was highly specific for Ca2+. The use of other divalent cations resulted in decreased binding in the order Cd2+ greater than Zn2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+. Zinc ions had a synergistic effect on Ca2(+)-dependent VAC alpha binding. The Ca2+ concentration needed for half-maximal binding to cardiolipin, dioleoyl-phosphatidylglycerol, DOPS, phosphatidylinositol, phosphatidic acid, dioleoyl-phosphatidylethanolamine, and sphingomyelin increased in that order. Adsorption was independent of the overall surface charge of the phospholipid membrane.
Highlights
No adsorption was observed on pure DOPC bilayers at a Ca2+ concentration of 3 JnM
The Ca2+ concentration needed for half-maximal binding to cardiolipin, dioleoyl-phosphatidylglycerol, DOPS, phosphatidylinositol, phosphatidic acid, dioleoyl-phosphatidylethanolamine, and sphingomyelin increased in that order
This paper reports the phospholipid binding properties of recombinant VACa and shows that rVACa has a high, calcium-dependent affinity for various phospholipid surfaces
Summary
The binding properties of VACa to phospholipid bilayers were studied by ellipsometry. Half-maximal adsorptions to phospholipid bilayers consisting of 100, 20, 5, and 1% dioleoyl-phosphatidylserine (DOPS) supplemented with dioleoyl-phosphatidylcholine (DOPC) were reached at Ca2+ concentrations of. The adsorption to bilayers containing more than 10% DOPS was independent of VA& concentrations in the range of 0.5-100 nM. No adsorption was observed on pure DOPC bilayers at a Ca2+ concentration of 3 JnM. The Ca2+ concentration needed for half-maximal binding to cardiolipin, dioleoyl-phosphatidylglycerol, DOPS, phosphatidylinositol, phosphatidic acid, dioleoyl-phosphatidylethanolamine, and sphingomyelin increased in that order. Adsorption was independent of the overall surface charge of the phospholipid membrane. Like the activation of prothrombin by factors X, and V,, are catalyzed by phospholipid surfaces to which the coagulation factors bind (l-3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.