Abstract

Previous studies generally agree that in the blood serum vanadium is transported mainly by human serum transferrin (hTF). In this work through the combined use of electrochemical techniques, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and small-angle X-ray scattering (SAXS) data it is confirmed that both VIV and VV bind to apo-hTF and holo-hTF. The electrochemical behavior of solutions containing vanadate(V) solutions at pH=7.0, analyzed by using two different voltammetric techniques, with different time windows, at a mercury electrode, Differential Pulse Polarography (DPP) and Cyclic Voltammetry (CV), is consistent with a stepwise reduction of VV→VIV and VIV→VII. Globally the voltammetric data are consistent with the formation of 2:1 complexes in the case of the system VV-apo-hTF and both 1:1 and 2:1 complexes in the case of VV-holo-hTF; the corresponding conditional formation constants were estimated. MALDI-TOF mass spectrometric data carried out with samples of VIVOSO4 and apo-hTF and of NH4VVO3 with both apo-hTF and holo-hTF with V:hTF ratios of 3:1 are consistent with the binding of vanadium to the proteins. Additionally the SAXS data suggest that both VIVOSO4 and NaVVO3 can effectively interact with human apo-transferrin, but for holo-hTF no clear evidence was obtained supporting the existence or the absence of protein-ligand interactions. This latter data suggest that the conformation of holo-hTF does not change in the presence of either VIVOSO4 or NH4VVO3. Therefore, it is anticipated that VIV or VV bound to holo-hTF may be efficiently up-taken by the cells through receptor-mediated endocytosis of hTF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.