Abstract

A 2,2′-dihydroxyazobenzene (DHAB) derivative was attached to a chloromethylated cross-linked polystyrene derivative in view of high affinity of DHAB for uranyl ion. Chloromethyl groups of the resin were converted to quaternary ammonium ions by treating with tertiary amines. Capacity of the resins for uranyl-uptake was measured, revealing that about 20 mg of uranium can be complexed to 1 g of the resins. Formation constants (Kf) for uranyl complexes of the resins were determined. In the presence of >0.1 M bicarbonate ion at pH 8.10, log Kf of about 15 was obtained. As bicarbonate concentration was lowered, Kf decreased considerably. Degrees of uranyl-uptake from rapidly flowing uranyl solutions were measured, and the results suggested that rate of uranyl-uptake may not impose a major barrier to application of the resins in uranium extraction from seawater. Uranium extraction from seawater with the resins was carried out on the east coast of Korean peninsula. The amount of uranium extracted from seawater was about 10 µg/g resin. This is not satisfactory for economical processes of uranium recovery from seawater. Results of the present study, however, suggested that modification of the DHAB-containing resins can improve uranyl-binding ability, probably leading to economical recovery of uranium from seawater. In addition, simulation of uranyl-binding processes in seawater with the laboratory procedures developed in this study was satisfactory. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3169–3177, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.