Abstract

BackgroundUracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized.ResultsThis manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. Comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms.ConclusionThe first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.Electronic supplementary materialThe online version of this article (doi:10.1186/s12900-015-0037-1) contains supplementary material, which is available to authorized users.

Highlights

  • Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes

  • The Base excision repair (BER) pathway for the removal of uracil (Ura), which arises in DNA from deamination of cytosine (Cyt) or incorporation of dUTP during DNA synthesis, is initiated by uracil-DNA glycosylases (UDGs) [3]

  • We present a structural comparison of Vaccinia uracil-DNA glycosylase (D4) and human Family I uracil-DNA glycosylase (UNG) for which crystal structures are available in the DNA-free state, in complex with uracil-containing DNA and in complex with a DNA containing an abasic site [6,7,8, 10]

Read more

Summary

Introduction

Vaccinia virus uracil-DNA glycosylase (known as D4), serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. Base excision repair (BER) pathway [1] for repair of small lesions is initiated by monofunctional DNA glycosylases. These enzymes use a water molecule as a nucleophile to cleave the N-glycosidic bond between the target base and deoxyribose, releasing the damaged base and leaving an apurinic/apyrimidinic (AP) site [2].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.