Abstract

BackgroundSmall-cell lung carcinoma (SCLC) is an aggressive malignancy characterised by an early relapse, a tendency towards drug resistance, and a high incidence of metastasis. SCLC cells are of neuroendocrine origin and express high levels of somatostatin receptors; therefore, future treatment might involve targeting tumours with radiolabelled somatostatin analogues. This therapy induces abundant necrotic patches that contain exposed keratins; thus, keratin 8, which is one of the most abundant cytoskeletal proteins may represent an interesting secondary target for SCLC. This study aimed to investigate the effects of177Lu-DOTA-Tyr3-octerotate and the binding of the monoclonal anti-keratin 8 antibody, TS1, in vitro in treated SCLC- and midgut-xenografted mouse models.MethodsNCI-H69- and GOT1-xenotransplanted mice were treated with three doses of 30 MBq177Lu-DOTA-Tyr3-octreotate administered 24 h apart. Mice xenotransplanted with NCI-H69 were sacrificed 1, 5, 12, 20 and 150 days post-injection or when the tumour had regrown to its original size. GOT1-xenotransplanted mice were sacrificed 3 days post-injection. Immunohistochemistry was performed to evaluate TS1 staining in tumours and in seven human biopsies of primary SCLC from pulmonary bronchi. Central cell density and nucleus size were determined in NCI-H69 sections.ResultsTwelve days after177Lu-DOTA-Tyr3-octerotate treatment, the SCLC xenograft response was extensive. Twenty days after treatment, one of three analysed tumours displayed complete remission. The other two tumours showed 1/4 the cell density of untreated controls and cell nuclei were about three times larger than those of untreated controls. At 150 days after treatment, one of four mice exhibited complete remission. Treated tumours displayed increased TS1 antibody accumulation and high TS1 binding in necrotic patches. All seven human SCLC biopsies displayed necrotic areas with TS1 staining.ConclusionsRadiation treatment with three injections of 30 MBq177Lu-DOTA-Tyr3-octreotate had pronounced effects on tumour cell density and cell nuclei, which indicated mitotic catastrophe. Despite these anti-tumour effects, two of three SCLC tumours recurred. Further studies should investigate the nature of tumour cell survival and develop more effective treatments. High TS1 accumulation in tumour sections in vitro after177Lu-DOTA-Tyr3-octerotate treatment indicated that TS1 might represent a promising secondary therapeutic strategy.

Highlights

  • Small-cell lung carcinoma (SCLC) is an aggressive malignancy characterised by an early relapse, a tendency towards drug resistance, and a high incidence of metastasis

  • In tumours treated for 5 days, a slightly higher number of apoptotic cells with intense hematoxylin staining were observed between the necrotic areas and viable cells

  • Our results showed that treatment with three fractions of 30 MBq177Lu-DOTA-Tyr3-octreotate given in 24-h intervals had pronounced effects

Read more

Summary

Introduction

Small-cell lung carcinoma (SCLC) is an aggressive malignancy characterised by an early relapse, a tendency towards drug resistance, and a high incidence of metastasis. SCLC cells are of neuroendocrine origin and express high levels of somatostatin receptors; future treatment might involve targeting tumours with radiolabelled somatostatin analogues. Conclusions: Radiation treatment with three injections of 30 MBq177Lu-DOTA-Tyr3-octreotate had pronounced effects on tumour cell density and cell nuclei, which indicated mitotic catastrophe. Despite these anti-tumour effects, two of three SCLC tumours recurred. The tumours continued to decline over the entire study period (34 days) [18] Despite these promising results with fractionation protocols, a later study by Kolby et al demonstrated that the SSTR2 receptors were saturated when doses above

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.