Abstract

The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the most energetically demanding reactions in nature by using light energy to drive a catalyst capable of oxidizing water. The water oxidation reaction is catalyzed at the Mn4Ca-oxo cluster in the oxygen-evolving complex (OEC), which cycles through five light-driven S-state intermediates (S0-S4). A detailed mechanism of the reaction remains elusive as it requires knowledge of the delivery and binding of substrate water in the higher S-state intermediates. In this study, we use two-dimensional (2D) hyperfine sublevel correlation spectroscopy, in conjunction with quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT), to probe the binding of the substrate analog, methanol, in the S2 state of the D1-N87A variant of PSII from Synechocystis sp. PCC 6803. The results indicate that the size and specificity of the "narrow" channel is altered in D1-N87A PSII, allowing for the binding of deprotonated 13C-labeled methanol at the Mn4(IV) ion of the catalytic cluster in the S2 state. This has important implications on the mechanistic models for water oxidation in PSII.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.