Abstract
The J1 glycoproteins can be obtained in multiple forms in the soluble fraction of developing and adult mouse brain tissue. They are recovered as two forms of apparent molecular weights of 160,000 and 180,000 (J1-160) from adult mouse brain and as forms of apparent molecular weights of 200,000 and 220,000 (J1-220) from developing brain. J1-160 and J1-220 share common epitopes but are considered as separate entities, with J1-220 being immunochemically closely related if not identical to tenascin. Based on the observation that J1 immunoreactivity appears on basement membrane and interstitial collagens after denervation of the neuromuscular junction in adult rodents, we became interested in investigating the binding properties of J1 glycoproteins to extracellular matrix constituents in vitro. Both J1-160 and J1-220 bound to collagens type I-VI and IX but not to laminin, fibronectin, bovine serum albumin, or gelatin under hypotonic buffer conditions. Under isotonic buffer conditions, J1-220 bound to all collagen types, whereas J1-160 bound only to collagen types V and VI with values that could be examined by Scatchard analysis. Binding of J1-220 to collagens displayed two binding constants (KD) between 1.5 and 4.4 X 10(-9) and 1.8 and 5.5 X 10(-8) M, respectively, under hypotonic buffer conditions and a single KD of 2.1-8.0 X 10(-8) M under isotonic buffer conditions. Binding of J1-160 to collagens had an apparent KD of 1.9-8.0 X 10(-9) M under hypotonic buffer conditions. Under isotonic buffer conditions, binding constants of J1-160 to collagen types V and VI were approximately 2 X 10(-8) M. Binding of J1-220 to collagen type I could be inhibited by J1-220, J1-160, and collagen type VI but not by fibronectin or gelatin. Conversely, binding of J1-160 was inhibited by J1-220, J1-160, and collagen type VI (in order of decreasing efficacy of competition). J1-160 and J1-220 were retained on a heparin-agarose column and eluted in a salt gradient at approximately 0.5 M NaCl. The formation of the J1-heparin complexes was inhibited 100-fold more efficiently by heparin than by chondroitin sulfate. These experiments show that J1 glycoproteins resemble in many respects the extracellular matrix constituents fibronectin, laminin, vitronectin, and von Willebrand factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.