Abstract

The binding of a herpes simplex virus type 1 (HSV-1) encoded polypeptide to a viral origin of DNA replication has been studied by using a gel retardation assay. Incubation of nuclear extract from HSV-1 infected cells with a labelled origin-containing fragment resulted in the formation of a specific retarded complex, the migration of which was further reduced in the presence of an antibody reactive with the UL9 gene product. Introduction of an additional copy of the UL9 gene, under the control of an immediate early (IE) promoter, conferred the ability to express origin binding activity at the non-permissive temperature upon an HSV-1 ts mutant blocked at the IE stage of infection. Endogenous or exogenous proteolytic activity revealed the presence of a relatively protease-resistant domain which retained sequence-specific DNA binding activity. The C-terminal 317 amino acids of the UL9 gene expressed as a fusion protein in Escherichia coli also bound to the origin. Our results demonstrate that the UL9 gene product binds to a viral origin and that sequence specific recognition and binding are specified by the C-terminal 37% of the polypeptide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call