Abstract
Drug binding to human serum albumin (HSA) significantly affects in vivo drug transport and biological activity. To gain insight into the binding mechanism of the two B-Raf tyrosine kinase inhibitors dabrafenib and vemurafenib to HSA, in this work, we adopted a combined strategy based on fluorescence spectroscopy, isothermal titration calorimetry (ITC), circular dichroism (CD), and molecular simulations. Both anticancer drugs are found to bind spontaneously and with a 1:1 stoichiometry within the same binding pocket, located in Sudlow's site II (subdomain IIIA) of the protein with comparable affinity and without substantially perturbing the protein secondary structure. However, the nature of each drug-protein interactions is distinct: whereas the formation of the dabrafenib/HSA complex is more entropically driven, the formation of the alternative vemurafenib/HSA assembly is prevalently enthalpic in nature. Kinetic analysis also indicates that the association rate is similar for the two drugs, whereas the residence time of vemurafenib within the HSA binding pocket is somewhat higher than that determined for the alternative B-Raf inhibitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.