Abstract

The mechanism by which spermidine induces the appearances of floral buds in thin-layer tobacco (Nicotiana tabacum) tissue culture was studied by following the fate of the radioactive compound. [3H]Spermidine was taken up rapidly by the tissue, and after a brief lag, a portion was bound to trichloroacetic acid precipitable macromolecules. Such binding increased to a maximum on day 4 of culture, coinciding with the onset of bud differentiation, and declined thereafter until shortly before flowering. About 82% of the label in the trichloroacetic acid precipitate remained as spermidine, 14% was metabolized to putrescine, 3% to spermine, and 1% to gamma-aminobutyric acid. Spermidine was covalently bound to a protein with a molecular size of about 18 kilodaltons. Hydrolysis of this protein and analysis of the labeled entities revealed 81% spermidine, 16% putrescine, and 3% spermine. This post-translational modification of a unique protein by attachment of spermidine may be causally connected to the appearance of flower buds in thin-layer tobacco cultures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.