Abstract

Quinomycin antibiotic UK-65,662 binds selectively to the 5'-CpG-binding sites of the DNA duplexes d(ACGT)2 and d(GACGTC)2; the complexes have been studied in detail by 1H-n.m.r. spectroscopy and molecular-modelling techniques employing nuclear Overhauser effect-restrained energy minimization and molecular dynamics. Whereas the terminal A.T base pairs of the tetamer duplex d(ACGT)2 adopt a stable Hoogsteen alignment (characterized by a syn glycosidic conformation of the purine base), when internalized within the hexamer duplex d(GACGTC)2, the A.T base pairs revert to anti glycosidic torsion angles characteristic of the Watson-Crick hydrogen-bonding scheme. The energetics of base-pair stacking at the terminal 5'-GpA steps of the hexamer complex, with base pairs in the Watson-Crick alignment, are concluded to be important determinants of the adopted conformation, whereas an energetic preference for stacking interactions between terminal Hoogsteen A.T base pairs and the drug quinoline chromophores is evident in the tetramer complex. The internal G.C base pairs in both complexes are highly stabilized, as indicated by the very slow exchange rates of the guanine imino protons; in contrast, the flanking A.T base pairs are no more stable than in the ligand-free DNA duplexes. A large number of intermolecular nuclear Overhauser effects are indicative of many van der Waals contacts and hydrogen-bonding between the antibiotic and the minor groove of the central G.C base pairs in both complexes, indicating that interactions with the G.C base pairs in each duplex are very similar providing the essential features for recognition and tight binding. Despite the difference in the conformation of the A.T base pairs, stacking with the quinoline rings occurs primarily with the adenine bases in both complexes. Relative intensities of intranucleotide versus internucleotide nuclear Overhauser effects indicate that both duplexes are substantially unwound by drug binding (particularly at the CpG step) and this is confirmed by the structure calculations. Both duplexes have ladder-like structures that must lead to significant local distortions of the DNA conformation in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call