Abstract

The interactions between quercetin and bovine (or human) hemoglobin (Hb) were systematically investigated by fluorescence, UV-vis absorption spectroscopy, and molecular docking to demonstrate the structural mechanism by which quercetin affected the Hb redox state and stability. Quercetin could interact with the central cavity of the Hb molecule with one binding site to generate an Hb-quercetin complex, and the hydrophobic interaction played an important role in the formation of the complex. The binding constant for the Hb-quercetin complex at 298 K was observed to be 1.25 × 104 M-1. In addition, quercetin effectively inhibited Hb-induced lipid oxidation in liposomes or washed muscles, which was ascribed to the conversion to oxy-Hb and decreased hemin dissociation from met-Hb. Consistent with its lower abilities to bind Hb and scavenge free radicals, rutin (i.e., quercetin-3-rhamnosylglucsoside) did not significantly influence the redox state of Hb nor reduce hemin release from Hb, and subsequently, it less effectively inhibited Hb-induced lipid oxidation than quercetin. Altogether, the results herein provide novel insights into the antioxidant mechanism for quercetin and are beneficial to the application of natural quercetin in Hb-containing foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call