Abstract

Architecture of the poly(l-lactic acid) (PLLA) scaffolds is known to affect protein affinity and binding strength. Here, we demonstrate that nanofibrous electrospun PLLA scaffolds reversibly absorb the pro-migratory serum factors that stimulate migration of vascular smooth muscle via an NFkB-dependent mechanism. Further, we demonstrate that mesenchymal stem cells seeded on the PLLA scaffolds do not enhance muscle migration but may maintain the ability of induced cells to migrate in an NFkB-independent manner. These findings further support the promising application of PLLA scaffolds for therapeutic angiogenesis and vascular graft engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.