Abstract

Anthrax toxin consists of three different molecules: the binding component protective antigen (PA, 83 kDa), and the enzymatic components lethal factor (LF, 90 kDa) and edema factor (EF, 89 kDa). The 63 kDa C-terminal part of PA, PA 63, forms heptameric channels that insert in endosomal membranes at low pH, necessary to translocate EF and LF into the cytosol of target cells. In many studies, about 30 kDa N-terminal fragments of the enzymatic components EF (254 amino acids) and LF (268 amino acids) were used to study their interaction with PA 63-channels. Here, in experiments with artificial lipid bilayer membranes, EF N and LF N show block of PA 63-channels in a dose, voltage and ionic strength dependent way with high affinity. However, when compared to their full-length counterparts EF and LF, they exhibit considerably lower binding affinity. Decreasing ionic strength and, in the case of EF N, increasing transmembrane voltage at the cis side of the membranes, resulted in a strong decrease of half saturation constants. Our results demonstrate similarities but also remarkable differences between the binding kinetics of both truncated and full-length effectors to the PA 63-channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.