Abstract

Induced CD spectra of meso-tetrakis(N-methylpyridium-4-yl)porphyrin (TMPyP) complexed with d(A)12.d(T)12, d(G)12.d(C)12 duplex and d(A)12.[d(T)12]2, d(G)12.d(C)12.d(C)12+ triplex in the Soret band were compared in this study. When TMPyP is complexed with the duplex, a monomeric CD spectrum at a low [TMPyP]/[oligomer] ratio was apparent, while at a high mixing ratio, the excitonic CD was dominant. In contrast, when TMPyP was complexed with the triplex, the excitonic CD disappears at a relatively high mixing ratio, indicating the TMPyP exciton formation is inhibited by the third strand, which is located in the major groove. This observation indicates that the exciton is formed at the major groove of both AT- and GC-rich DNA, while the monomeric TMPyP binds at (or near) the minor groove of the AT site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.