Abstract

Present therapy of human superficial bladder cancer includes the intravesical administration of antitumor drugs and immunomodulators. The purpose of these studies was to determine whether liposomes can bind to human bladder cancer cells and thereby provide a mechanism to improve the delivery of anticancer agents to diseased urothelium. Negatively charged large multilamellar vesicles (MLVs) bound to four different human bladder tumor cell lines (253J, J82, T24, TCCSUP) more avidly than did small sonicated vesicles or vesicles consisting of uncharged phosphatidylcholine (PC). Of the three types of negatively charged MLVs tested, phosphatidylcholine/phosphatidylserine (7:3, mol ratio) (PC/PS) MLVs bound the most. MLV binding to tumor cells was saturable and appeared to be specific. In contrast, the binding of liposomes to normal fetal bladder cells was minimal. These data suggest that targeting of drugs to superficial bladder cancer can be achieved by the intravesical administration of PC/PS MLV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.