Abstract
Berberine, palmatine and coralyne, the isoquinoline alkaloids distributed in many botanical families, are extensively investigated due to their potential therapeutic actions and clinical utilities. In this work, their binding characteristics to hemoglobin (Hb) were studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, isothermal calorimetric titration and differential scanning calorimetric techniques. The results indicated that all the three alkaloids caused strong fluorescence quenching of Hb by the static quenching mechanism, but with differing quenching efficiencies. There was a single binding site on Hb for these alkaloids. According to the theory of Förster resonance energy transfer, the binding distances between β-Trp37 of Hb and berberine, palmatine and coralyne were evaluated to be 2.78 nm, 2.64 nm and 3.29 nm, respectively. The result of synchronous fluorescence, circular dichroism and 3D fluorescence revealed that the polarity around Trp residues experienced a significant increase in the presence of alkaloids. The binding was favoured by enthalpy and entropy changes. Results of circular dichroism, 3D and synchronous fluorescence studies confirmed that the binding of the alkaloids significantly changed the secondary structure of Hb. The studies revealed that berberine and palmatine bound to a site near to the α1β2 interface on Hb different than coralyne but the affinity of coralyne was one order higher than that of berberine and palmatine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.