Abstract

Ligand-induced activation of many receptors leads to dissociation of the alpha- and beta gamma-subunit complexes of heterotrimeric G proteins, both of which regulate a variety of effector molecules involved in cellular signaling processes. In one case, a cytosolic enzyme, the beta-adrenergic receptor kinase (beta ARK) binds to the dissociated, prenylated, membrane-anchored beta gamma-subunits of heterotrimeric G proteins (G beta gamma) and is thereby targeted to its membrane-bound receptor substrate. Quite recently, numerous proteins involved in cellular signal transduction have been shown to contain sequences homologous with a "domain" originally identified in the protein "pleckstrin" (pleckstrin homology domain; PH domain) and subsequently found in the G beta gamma interaction region of the beta ARK sequence. Here we demonstrate that glutathione S-transferase-fusion proteins, containing sequences encompassing the PH domain of nine proteins from this group, bind G beta gamma to varying extents. Binding of G beta gamma to these fusion proteins was documented either by a direct binding assay or by ability to block G beta gamma-mediated membrane translocation of beta ARK1. G beta gamma binding to these fusion proteins was inhibited by the alpha subunit of Go (Go alpha), indicating that the binding of G beta gamma to G alpha and the PH domain-containing fusion proteins is mutually exclusive. Studies with a series of truncated PH domains derived from the Ras-guanine-nucleotide-releasing factor indicate that the G beta gamma binding domain includes only the C-terminal portion of the PH domain and sequences just distal to this. Protein-protein interactions between G beta gamma and PH domain-containing proteins may play a significant role in cellular signaling analogous to that previously demonstrated for Src homology 2 and 3 domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.