Abstract

Traditional treatment methods used to clean-up heavy metal contamination of soils and waters are cost intensive whereas more cost effective methods need to be developed. The use of plant materials to remediate heavy contamination has been studied for the past two decades. This technique has shown much promise for many of the common heavy metal contaminants, but few studies have focused on the lanthanide series elements. By investigating the binding and interactions of the lanthanide elements to alfalfa biomass, a more complete understanding of the binding mechanisms and the interactions of heavy metals with biomaterials can be obtained. Different chemical functional groups on the alfalfa biomass, carboxyl, amino, sulfur, and ester groups, were modified to investigate the binding mechanisms of erbium(III) and holmium(III). Batch experiments were performed with native and chemically modified alfalfa biomass suggesting that the carboxyl groups play a major role in the binding of erbium(III) and holmium(III) to the alfalfa biomass. In addition, X-ray absorption spectroscopy (XAS) studies corroborated the data obtained from the batch experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call