Abstract
The interactions of dipyridamole with alpha(1) acid glycoprotein of plasma and with human platelets are related to inhibition of adenosine uptake by platelets. Binding studies by equilibrium gel filtration suggested that 1 mol of dipyridamole binds per mol of alpha(1) acid glycoprotein with a dissociation constant of 1.6 muM. Platelets contain two populations of binding sites, one with high and another with lower affinity for the drug. The binding of dipyridamole to the high-affinity sites follows a Michaelis-Menten binding pattern with a dissociation constant of 0.04 muM. Approximately 2 x 10(4) dipyridamole molecules are bound at the high-affinity sites of each platelet. The lower affinity sites bind the drug with a dissociation constant of 4 muM. In the presence of alpha(1) acid glycoprotein of plasma, the binding of dipyridamole to human platelets is inhibited. Correspondingly, the dipyridamole inhibition of adenosine uptake by platelets is reduced 1,000-fold by purified alpha(1) acid glycoprotein. The binding of dipyridamole to human platelets was found to be essential for its inhibition of adenosine uptake by platelets. Dipyridamole decreases the incorporation of [(14)C]adenosine radioactivity in platelet nucleotides and reduces the [(14)C]-ATP to [(14)C]ADP ratio. Purified alpha(1) acid glycoprotein reverses these effects of dipyridamole on adenosine metabolism of platelets in a concentration-dependent manner. An equilibrium of dipyridamole binding to alpha(1) acid glycoprotein and to platelets is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.