Abstract

Dihydroxynaphthyl aryl ketones 1–5 have been evaluated for their abilities to inhibit microtubule assembly and the binding to tubulin. Compounds 3, 4 and 5 displayed competitive inhibition against colchicine binding, and docking analysis showed that they bind to the tubulin colchicine-binding pocket inducing sheets instead of microtubules. Remarkable differences in biological activity observed among the assayed compounds seem to be related to the structure and position of the aryl substituent bonded to the carbonyl group. Compounds 2, 3 and 4, which contain a heterocyclic ring, presented higher affinity for tubulin compared to the carbocyclic analogue 5. Compound 4 showed the best affinity of the series, with an IC50 value of 2.1 μM for microtubule polymerization inhibition and a tubulin dissociation constant of 1.0 ± 0.2 μM, as determined by thermophoresis. Compound 4 was more efficacious in disrupting microtubule assembly in vitro than compound 5 although it contains the trimethoxyphenyl ring present in colchicine. Hydrogen bonds with Asn101 of α-tubulin seem to be responsible for the higher affinity of compound 4 respects to the others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.