Abstract

The interactions between polyphenols and plant fibres play an important role in controlling the release of phenolic compounds from food matrices for absorption in the gastrointestinal tract. This study probed the molecular interactions of diverse polyphenols with cellulose fibres by using a pure cellulose-producing bacterial model. Alkali treatment of bacterial cellulose was an effective method for obtaining a high purity cellulose model for study of polyphenol binding. Representatives of different polyphenol classes all bound to cellulose spontaneously, rapidly, and to comparable extents (up to 60% w/w of cellulose). Langmuir binding isotherms were applied to determine quantitative aspects of the adsorption at equilibrium. The study indicated that binding was similar on a molar basis for ferulic acid, gallic acid, catechin and cyanidin-3-glucoside (but lower for chlorogenic acid), with the native charge of polyphenols a secondary factor in the interactions between polyphenols and cellulose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.