Abstract

DNA is the major target for a number of pharmaceutical drugs. The interaction of drug molecules with DNA plays a major role in pharmacokinetics and pharmacodynamics. Bis-coumarin derivatives have diverse biological properties. Here, we have explored the antioxidant activity of 3,3′-Carbonylbis (7-diethylamino coumarin) (CDC) using DPPH, H2O2, and superoxide scavenging studies followed by its binding mode in calf thymus-DNA (CT-DNA) using several biophysical methods including molecular docking. CDC exhibited comparable antioxidant activity to standard ascorbic acid. The UV–Visible and fluorescence spectral variations indicate the CDC-DNA complex formation. The binding constant in the range of 104 M−1 was obtained from spectroscopic studies at room temperature. The fluorescence quenching of CDC by CT-DNA suggested a quenching constant (KSV) of 103 to 104 M−1 order. Thermodynamic studies at 303, 308, and 318 K revealed the observed quenching as a dynamic process besides the spontaneity of the interaction with negative free energy change. Competitive binding studies with site markers like ethidium bromide, methylene blue, and Hoechst 33258 reflect CDC's groove mode of interaction. The result was complemented by DNA melting study, viscosity measurement, and KI quenching studies. The ionic strength effect was studied to interpret the electrostatic interaction and found its insignificant role in the binding. Molecular docking studies suggested the binding location of CDC within the minor groove of CT-DNA, complementing the experimental result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call