Abstract

Okadaic acid (OA) and dinophysistoxin-1 (DTX1) cause diarrheic shellfish poisoning. This article examines the biochemical interactions of the two toxins with novel okadaic acid binding proteins (OABPs) 2.1 and 2.3, originally isolated from the marine sponge Halichondria okadai. First, recombinant OABPs 2.1 and 2.3 were expressed in Escherichia coli BL21 (DE3) cells. Binding assays using [24- 3H]OA and the recombinant OABP 2.1 or 2.3 demonstrated the dissociation constant K d of 1.30 ± 0.56 nM and 1.54 ± 0.35 nM, respectively. Binding of [24- 3H]okadaic acid to recombinant OABP2.1 was almost equally replaced with OA and DTX1. OA-induced cytotoxicity in mouse leukemia P388 cells was inhibited in the presence of the recombinant OABPs 2.1 and 2.3 with an EC 50 of 92 ± 8.4 nM and 87 ± 13 nM, respectively. These results suggest that the blockage of OA-induced cytotoxicity by OABPs 2.1 and 2.3 may be involved in regulating symbiotic relationships present in the sponge H. okadai.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call