Abstract

A tethered vesicle, which consists of a cylindrical membrane tube and a spherical vesicle, is produced by a mechanical force that is experimentally imposed by optical tweezers and a micropipette. This tethered vesicle is employed for examining the curvature sensing of curvature-inducing proteins. In this study, we clarify how the binding of proteins with a laterally isotropic spontaneous curvature senses and generates the membrane curvatures of the tethered vesicle using mean-field theory and meshless membrane simulation. The force-dependence curves of the protein density in the membrane tube and the tube curvature are reflection symmetric and point symmetric, respectively, from the force point, in which the tube has a sensing curvature. The bending rigidity and spontaneous curvature of the bound proteins can be estimated from these force-dependence curves. First-order transitions can occur between low and high protein densities in the tube at both low and high force amplitudes. The simulation results of the homogeneous phases agree very well with the theoretical predictions. In addition, beaded-necklace-like tubes with microphase separation are found in the simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call